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1. INTRODUCTION

1.1 Objectives

The main objectives of this two-year study are described in Volume I of this annual
report. The first objective is to assemble data sets to be used for test and evaluation of the
performance of neural networks for automated processing and interpretation of seismic
data. These data sets are provided to MIT Lincoln Laboratory for their effort on the
development of neural networks for seismic application under DARPA's Artificial Neural
Network Technology program.

A second objective of this study is to evaluate the results of this neural network
program in the context of monitoring nuclear explosion testing. To achieve this objective,
we will test and evaluate the neural network application developed by MIT Lincoln
Laboratory, and we have developed our own neural network application for automated
initial identification of seismic phases (P or S) using data recorded by 3-component
stations.

1.2 Current Status

A major effort during the first year of this project was spent on the development of
data sets for test and evaluation of neural networks for seismic signal processing and
interpretation. This effort is described in detail in Volume I of the report [Sereno and
Patnaik, 1991 ].

An important problem in autoniated seismic data interpretation is initial phase
identification (P or S) using data recorded by 3-component stations. We developed and
tested a neural network approach to this problem using data recorded by the 3-component
elements of the array stations ARCESS, NORESS, FINESA and GERESS, and 3-
component stations in Poland (KSP) and in the former Soviet Union (GARM). Since the
polarization data from array stations are averaged during IMS processing, we also applied
our method separately to data recorded by the individual 3-component elements of
ARCESS and NORESS. The neural network results were compared to results from a
linear multivariate analysis of the same data, and adaptability of the neural networks was
examined by testing them with data from stations in other geological environments. We
implemented our neural network software into a test version of ESAL (Expert System for
Association and Location), which is a knowledge-based component of the Intelligent
Monitoring System (IMS). The integration and testing of the first version of the module is
complete. We will begin testing and evaluating its performance as soon as data from the
IRIS stations become available. The next version of this software will accommodate
.,context" as input to the trained neural network, which has shown improvement in
identification by 3-5%, compared to using polarization data alone.
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1.3 Outline of the Report

This annual report is divided into two volumes. Volume I is a description of Data
Set #1 that was provided to MIT Lincoln Laboratory for their neural network application
development [Sereno and Patnaik, 19911. Volume II (this report) describes the results of
our neural network application to the problem of initial phase identification, using
polarization attributes derived from data recorded by 3-component stations. Descriptions
of the design, development and testing of the neural networks are provided. Preliminary
results of comparative evaluation of the neural network approach with the multivariate
discriminant analysis are also reported. Finally, this report describes of the work being
done on the implementation of the developed neural network module into the IMS.

Section 2 describes the data used for neural network training and testing. Section 3
describes the neural network simulation. Section 3.1 describes why we use the neural
network approach. Section 3.2 describes back propagation neural networks and the
architecture used in this study. Section 3.3 describes the methods adopted for network
parameter estimation, preprocessing strategy for the input parameters, and the methods of
training and testing. Section 4 describes our results. Section 4.1 gives results of each 3-
component element of the arrays NORESS and ARCESS. Section 4.2 describes the
comparative evaluation of the results with those obtained from a multivariate discriminant
analysis method. Section 4.3 describes the adaptability of the trained neural networks to
other geological conditions. Section 4.4 describes the on-going work for improving the
identification performance by adding context in the simulation. Section 5 describes the
on-going work on the integration of our neural networks into IMS. Finally, Section 6
summarizes the study of neural computing for initial seismic phase identification.



2. THE DATA

The data used in this study are primarily the polarization parameters that are
routinely computed by the IMS and written to an on-line relational database at CSS
[Bache. et. al., 19901. These data are associated with regional P-type and S-type phases
that have been identified by seismic analysts at NORSAR and CSS. The analysts'
identifications of these phases are used as ground-truths for neural network training. We
used data from four regional arrays (ARCESS, NORESS, FINESA and GERESS), and
two 3-component stations (KSP and GARM). The locations of these stations are plotted in
Figure 1.

LOCATION OF THE ARRAYS AND SINGLE STATIONS

"*NOR-:t

*KSP
*GER

*GARM

Figure 1. The location of the high-frequency arrays ARCESS (ARC), FINESA (FIN), GERESS (GER),
NORESS (NOR). and 3-component stations KSP and GARM are shown.
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The method used in IMS for particle-motion analysis was developed by Jurkevics
[1988]. It computes a polarization ellipsoid within overlapping time windows by solving
the eigenproblem of the covariance matrix. Data from the 3-component sensors from the
arrays are combined by averaging the individual covariance matrices before solving the
eigenproblem. The covariance matrices are computed in the time domain for several
frequency bands, and then normalized and averaged to obtain a wide-band estimate for
each of the overlapping windows. The IMS implementation of this is described by Bache,
et. al., [19901.

The effects of signal-to-noise ratio (snr) on the polarization parameter estimation
have been studied in detail by Suteau-Henson [19911. Large scatter is observed for data
with snr < 2.0. Therefore, we have considered two separate categories of data (all snr and
snr > 2.0) for all of our neural network simulations. The snr is the ratio of the maximum
signal 3-component amplitude to the maximum pre-arrival noise 3-component amplitude.
The 3-component amplitude is measured from the time window with maximum
rectilinearity, and is equal to the sum of the square roots of the eigenvalues (i.e., it is the
sum of the amplitudes measured along the three axes of the polarization ellipsoid).

Several of the particle motion attributes are calculated from the time window with
the maximum rectilinearity. These are called P-type attributes in the descriptions below.
Also, several attributes are calculated from the time window with maximum 3-component
amplitude. They are called S-type attributes. The polarization attributes used in this study
are defined as:

freq: Center frequency of the passbands with snr >1.5 used in the averaging. The
passbands are 1-2, 2-4, 4-8 and 8-16 Hz. For example, if all bands had snr
> 1.5, thenfreq would be 8.5 Hz.

rect: Signal rectilinearity defined as:

rect = I1 (X3 +X2 )1

where X1, X2, and X3 are the eigenvalues such that X- > X2 > X3. rect is a P-
type attribute.

plans: Signal planarity defined as:
x'3

plans = I - -
X2

Planarity is measured from the window with the maximum 3-component
amplitude (S-type attribute).



hvrat: Horizontal to vertical power ratio defined as:
c 3 + C2

hvrat - 2
2c,

where c1, c2 , and c3 are the diagonal elements of the covariance matrix, and
c, corresponds to the vertical component. hvrat is an S-type attribute.

hvratp: Similar to hvrat, but measured at the time of maximum rectilinearity. It is a
P-type attribute.

hmxmn: Maximum to minimum horizontal amplitude ratio defined as:

hmxmn =

where X and ?12 are the maximum and minimum eigenvalues obtained by
solving the 2-D eigensystem, using only the horizontal components. It is an
S-type attribute.

inang3: Incidence angle (measured from the vertical) of the eigenvector associated
with the smallest eigenvalue. It is also called the short-axis incidence angle
and is an S-type attribute.

inang 1: Apparent incidence angle (measured from the vertical) of the eigenvector
associated with the largest eigenvalue. It is also called the long-axis inci-
dence angle, or the emergence angle and is a P-type attribute.

Figures 2 - 9 show histograms of these attributes for P-type and S-type phases
recorded by each of the stations mentioned previously. The number of P-type and S-type
phases that are used for each station are shown in parentheses and range from a few
hundred to several thousand. In addition to noticeable station-dependence in these data,
(e.g., P-rectilinearity at NORESS), these histograms show considerable overlap for P-type
and S-type phases. This is in contrast to the array measurement of phase velocity (Figure
10). Accurate estimates of this single parameter enable near perfect identification of P-
type and S-type phases for array data. Since this parameter is not available for single 3-
component data, automated phase identification is performed from the polarization
attributes. Neural network classifiers are well-suited for this type of situation since they
are capable of constructing non-linear decision surfaces across complex class boundaries
from high-dimensional input data.
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ARCESS

~P
0

0 -X

2 4 6 8 '0 *2

Phase Velocity (km S

08

2 4 6 a 10 12

Phase Vei0cty (km/vs)

Figure 10. Phase velocity is plotted for P and S phases recorded at ARCESS. Phase velocity is estimated
using a wide-band frequency-wavenumber (f-k) algorithm lKvaerna and Doornbos, 1986). This calculation
is done using all available vertical channels (up to 25 array elements). Note that a phase velocity of 6 km/s
almost perfectly separates P-type and S-type phases.

14



3. NEURAL NETWORK SIMULATION

In this section we describe the design and implementation of our neural networks
for automated initial identification of seismic phases recorded by 3-component stations.
The goal is to identify the phase type (P or S) based on the polarization attributes described
in the previous section.

3.1 Why Neural Networks?

There are several techniques that can be used for automated initial identification of
seismic phases using polarization attributes. The current rule-based system of IMS has
explicit rules (knowledge sources) for this task. However, it is difficult to develop rules
for tasks that use multivariate data (8-10 polarization attributes). In addition, polarization
characteristics are site-specific, so a new set of rules must be developed each time a new
station is added to the seismic network. Multivariate statistical techniques are applicable
in this situation [Suteau-Henson, 1991]. However, the required assumption of normality
of the data and a linear method renders it sensitive to outliers and noise, particularly for
low snr. The neural networks used in our study do not require the normality assumption
and are less sensitive to outliers. These networks offer a data-intensive, case-based
approach to the problem. The functional relation between the polarization attributes and
the corresponding phase-type is derived as a network of nodes and weights connecting
these nodes. Also, neural networks are amenable to machine-learning techniques and are
easily adapted to data from new stations.

There have been successful applications of this technique in seismological
problems [Patnaik, 1989; Patnaik, et. al., 1990; Patnaik and Mitchell, 1990; Dysart and
Pulli, 1990; and Dowla, et. al., 1990]. In the next section we briefly describe the particular

type of neural network used in our study.

15



3.2 Neural Networks with Back Propagation Training

The neural network architecture that we used has three layers: eight input nodes,
four middle (hidden) nodes, and two output nodes (Figure 1 I) The input layer with eight
nodes corresponds to the eight polarization attributes, and two output nodes correspond to
P-type and S-type phases. All of the networks have four middle-layer nodes. The number
of these nodes was determined empirically as described in Section 3.3.2. The inputs to
each node in the middle layer are weighted sums of the polarization attributes, and the
output of a node is calculated by applying a non-linear thresholding function to its input
(Figure 12). These nodes act as thresholding units; the thresholding function suppresses
the outputs to between 0 and 1. Determination of the appropriate weights among the
nodes constitutes network training or learning. The weights wi, converging to a node a,
may be thought of as the coefficients of an equation representing an [i-l]-dimensional
plane. Each of the nodes aj, with their weight wq, thus partition the input space (training
samples) into segments bounded by hyper-planes. These segmented regions each
represent a class (sub-class) of the data. During training the positions of these hyper-
planes change. The training is based on applications to signals with known output
classifications. For network training, we employ a variation of the back-error propagation
algorithm described by Rumelhart and McClelland [ 1986].

P S
k )

4X2 [wk]

9x4 [ 4

a,

Fmq Red Plan Angi Ang3 Hmn Ivrntp Hvra

Figure 11. A simple 3-layer, feed-forward neural network with eight input nodes (a,), four middle (hidden)
nodes (a.), and two output nodes (ak) Wq are the weights from input to middle layer and WA are the
weights from middle to output layer.
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Figure 12. Non-linear thresholding function used at the middle and output layer nodes.

The training is accomplished by minimizing the sum square error, E, measured at the out-
put units. This error is

defined as:

E = (ok- tk)2
k

where ok is the output produced at node "k" by propagating input patterns [ajI through the
network. The term tk is the desired output of node "k", which is the teaching signal. The
vector [aj is the vector of polarization parameters and tk is either 1 or 0 depending on
whether [i corresponds to a P-type or S-type phase.

17



An output oj can be represented as:
l

l+e

The error term is propagated back to the middle layer nodes using the generalized
delta rule [Rumelhart and McClelland, 1986] which applies weight optimization by the
gradient descent method. Two parameters called learning rate and momentum constant
that are used in this algorithm are adjusted by trial and error during training. This process
was found to be much slower than a conjugate-gradient optimization technique, which we
have used for all of our network training. The latter technique also obviates the need for
the earlier mentioned heuristic parameters and is much faster.

The term xj, shown in the expression for a node output, represents a bias node. As
shown in Figure 11, this bias node produces four weights connecting to the four middle
layer nodes. These weights offer translation to the dynamics of a network. What it means
for a trained network application is that a bias, which is dependent on site-specific
observed polarization patterns and the number of occurrences of such patterns, is built into
the network weights.

3.3 The Method

As described in the previous sections, we use neural networks as pattern matchers.
For our purpose, the vector of polarization parameters constitutes a pattern corresponding
to a given phase. The ground-truths are analyst-verified phase identifications and are
given as teaching inputs. The neural network parameters are problem-dependent (like the
number of nodes in the middle layer) and were estimated empirically as described later in
this section.

3.3.1 Data Processing

As mentioned in Section 2, the input data for our neural network training were
derived from the polarization processing of IMS. The eight polarization attributes
described in Section 2 were selected for the available associated P-type and S-type phases
recorded at each station. For these measured attributes, the value offreq ranges from 1 Hz
to 12 Hz; the incidence angles inangl and inang3 range between 0* and 90; rect and plans
range between 0.0 and 1.0; and the amplitude and power ratio parameters hmxmn, hvratp
and hvrat range from 0 to approximately 10. In order to keep the weights and weight
changes small, the usual convention is to scale the input parameters to small numeric
values, near ±1. We tried several preprocessing strategies to achieve this. The best
performance was obtained by replacing freq with 1/freq, dividing inangl and inang3 by
90, and compressing the amplitude parameters by taking their natural logarithm.
Therefore, we applied this preprocessing strategy to the inputs for all of our neural
networks.

18



3.3.2 Architecture

We conducted numerous experiments to choose the optimum network parameters.

These experiments involved adjusting the network learning rate, the number of nodes in
the middle layer, and the choice of polarization attributes using the 3-component data
recorded at ARCESS. For example, our method for selecting the number of nodes in the
middle layer is illustrated in Figure 13. This shows the percentage of identification
accuracy versus the number of nodes for P-type and S-type phases recorded at ARCESS.
As shown in Figure 13, networks with more than 4-5 nodes in the middle layer increase
complexity without improving identification accuracy. Therefore, we implemented four
middle layer nodes in all of our networks. Similarly, several combinations of polarization
attributes were used as input patterns in order to identify the most significant attributes
(e.g., varying number of input nodes). The identification accuracy is close to 85% for all
snr ARCESS data using four parameters (rect, inangl, hvrat and inang3). By adding the
rest of the polarization attributes, this accuracy increased by 5-7% without increasing the
training time significantly. Therefore, we used all eight polarization attributes as input to
our simulations.

EMPIRICALLY ESTIMATED MIDDLE-LAYER NODES

0
C)

8

0

C)

CIO

ARCESS
0

0
0

-0

I |I I I I

0 5 10 15 20 25 30
no. of nodes

Figure 13. Percentage identification accuracy versus the number of nodes in the middle layer. This
example is for P-type and S-type phases with snr > 2.0 recorded at ARCESS. The networks are of the form
8-X-2, where 8 is the number of inputs, X is the variable number of nodes in the middle layer, and 2 is the
number of output nodes (P or S).
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Figure 14 shows the schematic 3-layer architecture for the resulting network for
the station GARM. The final weight configurations (two weight matrices) are derived by
using the method described in Section 3.2. As show" ,n Figure 14, the higher activation of
the P-output node implies that the set of polarization attributes identified the associated
phase as a P-type phase. A node activation value of 0.5 would represent an indeterminate
case (see Section 3.3.4).

3.3.3 Network Training

Our results of identification accuracy are based on training the networks with 2/3
of the data, and evaluating the performance (testing) on the remaining 1/3. Stability is
established by applying this test three times, each time using a different 1/3 of the data for
testing for each station. The results are reported as the average of the three tests, since no
appreciable differences among the results for different test sets were noticed.

Training a typical neural network required approximately 500 presentations
(forward propagation, backward propagation and weight adjustment) of about 2,000
sample patterns and took less than one hour on a SUN-4 Sparc station. Of course, the
training time varies with the sample size when all other network parameters remain the
same.
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3.3.4 Confidence Factors

We estimated an empirical confidence measure for the phase identifications

determined by the neural networks (Figure 15) by companng the output activations of
each node to the true phase (ground-truth). As shown in Figure 15, an output activation
higher than 0.65 corresponds to greater than 90% confidence in the neural network phase
identification for both phases at ARCESS and for S-type phases at NORESS. The lower

confidence obtained for P-type phases at NORESS is perhaps explained by the scattering
effect introduced by the heterogeneities beneath the array, causing polarization parameters
to be more irregular. This is also noticeable from the histogram distribution, as shown in
Figure 2. There are more rigorous methods of the estimation of probability of a phase

identification from the outputs of the neural networks, but we have not implemented them

in the current version.

EMPIRICALLY-ESTrMATED CONFIDENCE FACTORS

" " __P-phases
./ // ---S-'phases

O ... , / J INNER CURVES ARE FOR ARCESS

u") / / OUTER ONES ARE FOR NORESS

0

(U'

0.50 0.55 0.60 0.65 0.70 0.75 080 0 85 0.90

node activation value

Figure 15. Empirically-estimated confidence factors for ARCESS (two inner curves) and similarly for
NORESS. The solid curves are for P-type phases and the dashed curves are for S-type phases.
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4. RESULTS

The percentage of correct identification for ARCESS and NORESS was 92-99%
for data with 3-component snr > 2.0 and 86-96% for All snr. However, this includes the
reduction in variance caused by averaging the four 3-component elements in these arrays.
The percentage of correct identification for each individual 3-component station in these
arrays is somewhat lower, as described in the next section.

4.1 Single 3-Component Elements of NORESS and ARCESS

To examine the effect of array averaging, which reduces variance in the
polarization measurements, we conducted similar network simulations with data from
each of the 3-component elements of the arrays ARCESS and NORESS. The results are
shown in Table 1. These results show that there are small variations in identification
accuracy among data from the individual elements. However, there is about an 8%
difference between the results for all snr and for snr > 2.0.

TABLE 1. SINGLE 3-COMPONENT SITES OF ARRAYS

Average Percentages of Correct Identification of Both P-type and S-1% pe Phases

ARCESS ARAO AR02 ARC4 ARCT

:ALL SNR 85.2 83.3 81.0 81.3

SNR >2 92.4 92.0 87.7 89.5

NORESS NRAO f NRC2 j NRO4 { NRC?

ALL SNR 80.5 76.4 79.3 79.8

SNR >2 92.3 89.8 92.4 90.1
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4.2 Comparative Evaluation

Another objective of the DARPA neural network program is to evaluate the
performance of this technique compared to existing techniques. We compared the neural
network results obtained for ARCESS and NORESS data to those obtained using a
multivariate discriminant approach on a common data set. The multivariate analysis is
being performed by Drs. Anne Suteau-Henson and Jerry Carter at CSS. Preliminary
results show that the identification accuracy obtained by neural networks is 3-7% higher
than those obtained by the multivariate statistical approach (Table 2). There are some
discrepancies in the data set that was used, which may reduce this difference.
Nevertheless, the improvements obtained by the neural networks were greater for S-type
phases than they were for P-type phases. We are currently examining the attributes of the
phases that were not correctly identified by either method to see if there are consistencies
among them that could be used to improve the overall performance.

TABLE 2. COMPARATIVE PERFORMANCE

Percentages of Correct Identification

ARCESS NORESS
ARCESS (SNR > 2) NORESS (SNR > 2)

P S P S P SIP [ S
NeuralNetwork 88.6 95.5 92.5 98.5 86.0 96.0 94.0 99.0

* Multi-variate
Discriminant 86.5 88.5 90.7 92.6 86.2 89.3 94.0 96.0
Analysis _I

*[Performed by A. Henson and J. Carter]

4.3 Adaptability

One of the goals of this program is to examine the adaptability (and generality) of
the trained neural networks to data from differing geologic environments. We initially
tested the generalization capability of trained neural networks and their adaptability to
data from a new site by applying them to data recorded by one of the IRIS stations
(GARM) in the former Soviet Union. We found that networks that were trained with
NORESS/ARCESS data performed at about 80% accuracy level when tested directly with
data recorded by GARM, without retraining. The identification accuracy increased by
about 10% after retraining, using data recorded at GARM.

Similar experiments were conducted for all the available stations in order to
introduce greater variability in the geologic conditions of our tests. Table 3 shows the
results of these tests. The polarization data used for these tests have 3-component snr >
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2.0. In order to have a comparable estimate, we chose data from only one 3-component

element of the arrays, ARCESS and NORESS. As shown in Table 3, the diagonals show
the training and testing with data from the same station. The off-diagonals show the

results of cross-testing (i.e., adaptability testing). It is observed that the identification
accuracy is about 10-15% higher if testing and training use data from the same station. A
trained network generally shows about 80% correct identification of phases if applied to
data from a new site. Thus, the propagation characteristics are similar for all geological
environments tested, to the extent that 80% of the detections have similar polarization
characteristics. The rest of the increase by 10-15% upon retraining may be attributed to
the site-specific characteristics of the different regions.

TABLE 3. ADAPTABILITY

Average Percentages of Correct Identification of Both P-type and S-type Phases (snr > 2)
- st ARCESS NORESS. FN ES SS KSP R

ARCESS 92.3 ..... 87.69 82.11 89.71 77.74 89.09

NORESS 9'69 .. 92.73 76.69 85.75 79.12 80.53

FINESA 89.80 84.2.--- 93.6 86.69 87.20 87.10

GERESS 90.36 87.27 83.17 ... 06" .... 77.05 88.31

KSP 83.80 84.97 81.81 78.77..... 2i--89.71

GARM 59.33 68.60 72.22 80.54 70.24 9.3.43

4.4 Adding Context

The polarization attributes that were used for neural network phase identification
did not have any contextual information, such as the information about relative detection
time of the corresponding phases. Therefore, as a next step we augmented the polarization
data with "context" in an effort to improve identification accuracy. So far we have
considered two such contexts. One of these is the difference between the number of
detections that arrive before the detection in question and the number of detections

following it for a fixed time window. An example of the distribution of this parameter is
shown in Figure 16 for the arrivals at the station KSP. The figure also shows another

contextual parameter obtained from the mean time differences between the detection in
question and detections before and after it within a fixed time window. These contextual
parameters show better separations than many of the polarization attributes (Figures 2 - 9).
When these are added to the polarization parameters in separate simulations, the

percentage of correct identification of phases observed at KSP increased by 3-5%. The
window lergth used in the contextual parameter was chosen empirically, and is governed
by the nature o . ,ismicity observed at a given station.
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CONTEXTUAL PARAMETERS (30 SECOND WINDOW)

KSP

(I) U/,
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Figure 16. The histograms on the left show the difference between the number of detections that arrive
before the detection in question and the number of detections following it. for a fixed window length of 30
seconds. Similarly, the histograms on the right show the differences between the mean arrival times before
and after the detection in question within a fixed time window
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5. INTEGRATION INTO IMS

We are currently replacing the rule-based initial phase identification in IMS with
our neural network approach. We have implemented the neural network module for initial
phase identification into a test version of ESAL, which is a knowledge-based system
component of IMS. This initial implementation will allow us to choose between the
neural network and the rule-based methods so that we can apply both to the same data
(Figure 17). This will provide a basis for a direct comparison of the two methods under
operational cndttions. We will test this performance using 3-component data recorded by
the IRIS stations in the former Soviet Union.

Wavelorm
data

--------------- Single-Station Processing
!Initial Phase i J P.hase.

Signal Identification Phase Identification
Processing (P or S) Grouping Pn, Pg, Px, Sn

DetectionAttributes

Neural Rule-
DBMS Network Based

(P or S) (P or S)

Initial Phase Identification

Figurel7. System Integration. This diagram shows the integration of the neural network initial phase
identification module into the rule-based component (Expert System for Association and Location) of the
IMS system. The initial phase identification element of the expert system will be replaced by a trained neural
network.
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6. SUMMARY

We have developed and implemented a neural netwotk technique for initial phase
identification using polarization measurements from 3-component data. This technique
has the following advantages:

" It is easier to develop than rules because phase identification is based on high-
dimensional multivariate input data.

" It incorporates station-specific characteristics.

" It performs 3-7% better than a linear multivariate discriminant analysis method
(particularly for data with low snr).

" It is easily adapted to data from new stations. For example, we find that we
achieve 75-80% identification accuracy for a new station without system retraining
(e.g., using a network derived from data from a different station). The data
required for retraining can be accumulated in about two weeks of continuous oper-
ation of the new station, and training takes less than one hour on a Sun4 Sparc sta-
tion. After this retraining, the identification accuracy increases to > 90%.

These neural networks are being implemented into DARPA's Intelligent Monitoring Sys-
tem which is in operation at the Center for Seismic Studies.

28



ACKNOWLEDGEMENTS

We thank Drs. Anne Suteau-Henson and Jerry Carter for their collaboration in the
comparative evaluation of the neural network results. Florence Riviere-Barbier kindly
provided the processed IRIS data used in this study. We acknowledge Richard Jenkin's

help in our system integration effort. We would also like to thank our colleagues at SAIC
and at the Center for Seismic Studies for their help and discussions throughout this work.
Christine Ferraro edited and prepared this document. This research was supported by the
Defense Advanced Research Projects Agency under Contract #F19628-90-C-0156 and
monitored by Phillips Laboratory, Hanscom AFB.

29



REFERENCES

Bache, T., S. Bratt, J. Wang, R. Fung, C. kobryn, and J. Given, "The Intelligent Monitoring System",
Bull. Seism. Soc. Am., 80, Part B, p.1833-1851, 1990.

Dowla, F., S. Taylor, and R. Anderson, Seismic Discrimination with Artificial Neural Networks:
Preliminary Results with Regional Spectral Data, Bull. Seism. Soc. Am., 80, 1346-1373, 1990.

Dysart, P., and J. Pulli, "Regional Seismic Event Classification at the NORESS Array: Seismological
Measurements and the Use of Trained Neural Networks", Bull. Seism. Soc. Am., 80, Part B,
p.1910-1933, 1990.

Jurkevics, A., "Polarization Analysis of 3-Component Array Data", Bull. Seism. Soc. Am., 78,
p.17 25-17 4 3, 1988.

Kvaerna, T. and D.J. Doornbos, "An Integrated Approach to Slowness Analysis with Arrays and 3-
Component Stations, Semi-annual Technical Summary, 10/1/85-3/31/86, NORSAR
Scientific Report No. 2- 85/86, Kjeller, Norway, 1986.

Patnaik, G.B., "Seismic Surface Wave Type Classification Using Artificial Neural Networks, GSA
Abstracts with Programs, Vol. 21, No. 6, p. A256, 1989.

Patnaik, G.B., B.J. Mitchell, and G.V. Rao, "Learned Classification of Seismic Events on Massively
Parallel Networks", Paper presented at the Annual Meeting of the Missouri Academy of
Sciences, St. Louis, Missouri, 28 April 1990.

Patnaik, G.B., and B.J. Mitchell, "Focal Depth Estimation with Multilayered Neural Networks",
Proceedings of the Twelfth Annual DARPA/GL Seismic Research Symposium, GL-TR-90-
0212, Special Reports, 261, p.320-326, 18-20 September 1990. ADA226635

Rumelhart, D.E., J.L. McClelland, and the PDP Group, "Parallel Distributed Processing,
Explorations in the Microstructure of Cognition", MIT Press, 1, p.547 , 1986.

Sereno, T., and G. Patnaik, "Data to Test and Evaluate the Performance of Neural Network
Architectures for Seismic Signal Discrimination--DARPA Data Set #1", Annual Technical
Report (Vol. I), SAIC-91/1236, Science Applications International Corporation, San Diego,
California, 1991.

Suteau-Henson, A., "3-Component Analysis of Regional Phases at NORESS and ARCESS:
Polarization and Phase Identification", in Nuclear Monitoring Research at the Center for
Seismic Studies, Scientific Report No. 1, PL-TR-91-2127, p.2-1 through 2-32, 13 May 1991,
ADA239653.

30



DISTRIBUTION LISt

Prof. fhomas Ahrens Dr. T.J. Bennett
Seismcological Lab, 252-21 S-CUBED
Division of Geological & Planetary Sciences A Division of Maxwell Laboratories
California Institute of Technology 11800 Sunrise Valley Drive, Suite 1212
Pasadea, CA 91125 Reston, VA 22091

Prof. K.iiti Aki Dr. Robert Blandford
Center for Earth Sciences AFTAC__/I, Center for Seismic Studies
University of Southern California 1300 North 17th Street
University Park Suite 1450
Los Angeles, CA 90089-0741 Arlington, VA 22209-2308

Prof. Shelton Alexander Dr. G.A. Bollinger
Geosciences Department Department of Geological Sciences
403 Detke Building Virginia Polytechnical Institute
The Pennsylvania State University 21044 Derring Hall
University Park, PA 16802 Blacksburg, VA 24061

Dr. Ralph Alewine, III Dr. Stephen Bratt
DARPA/NMRO Center for Seismic Studies
3701 North Fairfax Drive 1300 North 17th Street
Arlington, VA 22203-1714 Suite 1450

Arlington, VA 22209-2308

Prof. Charles B. Archambeau Dr. Lawrence Burdick
CIRES Woodward-Clyde Consultants
University of Colorado 566 El Dorado Street
Boulder, CO 80309 Pasadena, CA 91109-3245

Dr. Thomas C. Bache, Jr. Dr. Robert Burridge
Science Applications Int'l Corp. Schlumberger-Doll Research Center
10260 Campus Point Drive Old Quarry Road
San Diego, CA 92121 (2 copies) Ridgefield, CT 06877

Prof. Muawia Barazangi Dr. Jerry Carter
Institute for the Study of the Continent Center for Seismic Studies
Cornell University 1300 North 17th Street
Ithaca, NY 14853 Suite 1450

Arlington, VA 22209-2308

Dr. Jeff Barker. Dr. Eric Chael
Department of Geological Sciences Division 9241
State University of New York Sandia Laboratory
at Binghamton Albuquerque, NM 87185

Vestal, NY 13901

Dr. Douglas R. Baumgardt Prof. Vernon F. Cormier
ENSCO, Inc Department of Geology & Geophysics
5400 Port Royal Road U-45, Room 207
Springfield, VA 22151-2388 University of Connecticut

Storrs, CT 06268

Dr. Susan Beck Prof. Steven Day
Department of Geosciences Department of Geological Sciences
Building #77 San Diego State University
University of Arizona San Diego, CA 92182
Tuscon, AZ 85721



Marvin Denny Dr. Cliff Frolich
U.S. Department of Energy Institute of Geophysics
Office of Arms Control 8701 North Mopac
Washington, DC 20585 Austin. TX 78759

Dr. Zoltan Der Dr. Holly Given
ENSCO, Inc. IGPP, A-025
5400 Port Royal Road Scripps Institute of Oceanography
Springfield, VA 22151-2388 University of California, San Diego

La Jolla, CA 92093

Prof. Adam Dzieonski Dr. Jeffrey W. Given
Hoffman Laboratory, Harvard University SAIC
Dept. of Earth Atmos. & Planetary Sciences 10260 Campus Point Drive
20 Oxford Street San Diego, CA 92121
Cambridge, MA 02138

Prof. John Ebel Dr. Dale Glover
Department of Geology & Geophysics Defense Intelligence Agency
Boston College ATTN: ODT-IB
Chestnut Hill, MA 02167 Washington, DC 20301

Eric Fielding Dr. Indra Gupta
SNEE Hall Teledyne Geotech
INSTOC 314 Montgomery Street
Cornell University Alexanderia, VA 22314
Ithaca, NY 14853

Dr. Mark D. Fisk Dan N. Hagelon
Mission Research Corporation Pacific Northwest Laboratories
735 State Street Battelle Boulevard
P.O. Drawer 719 Richland, WA 99352
Santa Barbara, CA 93102

Prof Stanley Flatte Dr. James Hannon
Applied Sciences Building Lawrence Livermore National Laboratory
University of California, Santa Cruz P.O. Box 808
Santa Cruz, CA 95064 L-205

Livermore, CA 94550

Dr. John Foley Dr. Roger Hansen
NER-Geo Sciences HQ AFTAC/IT
1100 Crown Colony Drive Patrick AFB, FL 32925-6001
Quincy, MA 02169

Prof. Donald Forsyth Prof. David G. Harkrider
Department of Geological Sciences Seismological Laboratory
Brown University Division of Geological & Planetary Sciences
Providence, RI 02912 California Institute of Technology

Pasadena, CA 91125

Dr. Art Frankel Prof. Danny Harvey
U.S. Geological Survey CIRES
922 National Center University of Colorado
Reston, VA 22092 Boulder, CO 80309



Prof. Donald V. HeImberger Prof. Charles A. Langston
Seismological Laboratory Geosciences Department
Division of Geological & Planetary Sciences 403 Deike Building
California Institute of Technology The Pennsylvania State University
Pasaduna, CA 91125 University Park, PA 16802

Prof. Lugene Herrin Jim Lawson, Chief Geophysicist
Instituce for the Study of Earth and Man Oklahoma Geological Survey
Geophysical Laboratory Oklahoma Geophysical Observatory
Southern Methodist University P.O. Box 8
Dallas TX 75275 Leonard, OK 74043-0008

Prof. Robert B. Herrmann Prof. Thorne Lay
Department of Earth & Atmospheric Sciences Institute of Tectonics
St. Louis University Earth Science Board
St. Louis, MO 63156 University of California, Santa Cruz

Santa Cruz, CA 95064

Prof. Lane R. Johnson Dr. William Leith
Seismographic Station U.S. Geological Survey
University of California Mail Stop 928
Berkeley, CA 94720 Reston, VA 22092

Prof. Thomas H. Jordan Mr. James F. Lewkowicz
Department of Earth, Atmospheric & Phillips Laboratory/GPEH
Planetary Sciences Hanscom AFB, MA 01731-5000( 2 copies)

Massachusetts Institute of Technology
Cambridge, MA 02139

Prof. Alan Kafka Mr. Alfred Lieberman
Department of Geology & Geophysics ACDA/VI-OA State Department Building
Boston College Room 5726
Chestnut Hill, MA 02167 320-21st Street, NW

Washington, DC 20451

Robert C. Kemerait Prof. L. Timothy Long
ENSCO, Inc. School of Geophysical Sciences
445 Pineda Court Georgia Institute of Technology
Melbourne, FL 32940 Atlanta, GA 30332

Dr. Max Koontz Dr. Randolph Martin, III
U.S. Dept. of Energy/DP 5 New England Research, Inc.
Forrestal Building 76 Olcott Drive
1000 Independence Avenue White River Junction, VT 05001
Washington, DC 20585

Dr. Richard LaCoss Dr. Robert Masse
MIT Lincoln Laboratory, M-200B Denver Federal Building
P.O. Box 73 Box 25046, Mail Stop 967
Lexington, MA 02173-0073 Denver, CO 80225

Dr. Fred K. Lamb Dr. Gary McCartor
University of Illinois at Urbana-Champaign Department of Physics
Department of Physics Southern Methodist University
I 110 West Green Street Dallas, TX 75275
Urbana, IL 61801

3



Prof. Thomas V. McEvilly Prof. John A. Orcutt
Seismographic Station IGPP, A-025
University of California Scripps Institute of Oceanography
Berkeley, CA 94720 University of California, San Diego

La Jolla, CA 92093

Dr. Art McGarr Prof. Jeffrey Park
U.S. Geological Survey Kline Geology Laboratory
Mail Stop 977 P.O. Box 6666
U.S. Geological Survey New Haven, CT 06511-8130
Menlo Park, CA 94025

Dr. Keith L. McLaughlin Dr. Howard Patton
S-CUBED Lawrence Livermore National Laboratory
A Division of Maxwell Laboratory L-025
P.O. Box 1620 P.O. Box 808
La Jolla, CA 92038-1620 Livermore, CA 94550

Stephen Miller & Dr. Alexander Florence Dr. Frank Pilotte
SRI International HQ AFTAC1IT
333 Ravenswood Avenue Patrick AFB, FL 32925-6001
Box AF 116
Menlo Park, CA 94025-3493

Prof. Bernard Minster Dr. Jay J. Pulli
IGPP, A-025 Radix Systems, Inc.
Scripps Institute of Oceanography 2 Taft Court, Suite 203
University of California, San Diego Rockville, MD 20850
La Jolla, CA 92093

Prof. Brian J. Mitchell Dr. Robert Reinke
Department of Earth & Atmospheric Sciences ATTN: FCTVTD
St. Louis University Field Command
St. Louis, MO 63156 Defense Nuclear Agency

Kirtland AFB, NM 87115

Mr. Jack Murphy Prof. Paul G. Richards
S-CUBED Lamont-Doherty Geological Observatory
A Division of Maxwell Laboratory of Columbia University
11800 Sunrise Valley Drive, Suite 1212 Palisades, NY 10964
Reston, VA 22091 (2 Copies)

Dr. Keith K. Nakanishi Mr. Wilmer Rivers
Lawrence Livertnore National Laboratory Teledyne Geotech
L-025 314 Montgomery Street
P.O. Box 808 Alexandria, VA 22314
Livermore, CA 94550

Dr. Carl Newton Dr. George Rothe
Los Alamos National Laboratory HQ AFTACTITR
P.O. Box 1663 Patrick AFB, FL 32925-6001
Mail Stop C335, Group ESS-3
Los Alamos, NM 87545

Dr. Bao Nguyen Dr. Alan S. Ryall, Jr.
HQ AFTAC/ITR DARPA/NMRO
Patrick AFB, FL 32925-6001 3701 North Fairfax Drive

Arlington, VA 22209-1714

4



Dr. Richard Sailor Donald L. Springer
TASC, Inc. Lawrence Livermore National Laboratory
55 Walkers Brook Drive L-025
Reading, MA 01867 P.O. Box 808

Livermore, CA 94550

Prof. Charles G. Sammis Dr. Jeffrey Stevens
Center for Earth Sciences S-CUBED
University of Southern California A Division of Maxwell Laboratory
University Park P.O. Box 1620
Los Angeles, CA 90089-0741 La Jolla, CA 92038-1620

Prof. Christopher H. Scholz Lt. Col. Jim Stobie
Lamont-Doherty Geological Observatory ATTN: AFOSR/NL
of Columbia University Boiling AFB

Palisades, CA 10964 Washington, DC 20332-6448

Dr. Susan Schwartz Prof. Brian Stump
Institute of Tectonics Institute for the Study of Earth & Man
1156 Figh Street Geophysical Laboratory
Santa Cruz, CA 95064 Southern Methodist University

Dallas, TX 75275

Secretary of the Air Force Prof. Jeremiah Sullivan
(SAFRD) University of Illinois at Urbana-Champaign
Washington, DC 20330 Department of Physics

1110 West Green Street
Urbana, IL 61801

Office of the Secretary of Defense Prof. L. Sykes
DDR&E Lamont-Doherty Geological Observatory
Washington, DC 20330 of Columbia University

Palisades, NY 10964

Thomas J. Sereno, Jr. Dr. David Taylor
Science Application Int'l Corp. ENSCO, Inc.
10260 Campus Point Drive 445 Pineda Court
San Diego, CA 92121 Melbourne, FL 32940

Dr. Michael Shore Dr. Steven R. Taylor
Defense Nuclear Agency/SPSS Los Alamos National Laboratory
6801 Telegraph Road P.O. Box 1663
Alexandria, VA 22310 Mail Stop C335

Los Alamos, NM 87545

Dr. Matthew Sibol Prof. Cliffc-d Thurber
Virginia Tech University of Wisconsin-Madison
Seismological Observatory Department of Geology & Geophysics
4044 Derring Hall 1215 West Dayton Street
Blacksburg, VA 24061-0420 Madison, WS 53706

Prof. David G. Simpson Prof. M. Nafi Toksoz
IRIS, Inc. Earth Resources Lab
1616 North Fort Myer Drive Massachusetts Institute of Technology
Suite 1440 42 Carleton Street
Arlington, VA 22209 Cambridge, MA 02142

5



Dr. Larry Turnbull DARPA/RMO/SECURITY OFFICE
CIA-OSWR/NED 3701 North Fairfax Drive
Washington, DC 20505 Arlington, VA 22203-1714

Dr. Gregory van der Vink HQ DNA
IRIS, Inc. ATTN: Technical Library
1616 North Fort Myer Drive Washington, DC 20305
Suite 1440
Arlington, VA 22209

Dr. Karl Veith Defense Intelligence Agency
EG&G Directorate for Scientific & Technical Intelligence
5211 Auth Road AITN: DTIB
Suite 240 Washington, DC 20340-6158
Suitland, MD 20746

Prof. Terry C. Wallace Defense Technical Information Center
Department of Geosciences Cameron Station
Building #77 Alexandria, VA 22314 (2 Copies)
University of Arizona
Tuscon, AZ 85721

Dr. Thomas Weaver TACTEC
Los Alamos National Laboratory Battelle Memorial Institute
P.O. Box 1663 505 King Avenue
Mail Stop C335 Columbus, OH 43201 (Final Report)
Los Alamos, NM 87545

Dr. William Wortman Phillips Laboratory
Mission Research Corporation ATTN: XPG
8560 Cinderbed Road Hanscom AFB, MA 01731-5000
Suite 700
Newington, VA 22122

Prof. Francis T. Wu Phillips Laboratory
Department of Geological Sciences ATIN: GPE
State University of New York Hanscom AFB, MA 01731-5000

at Binghamton
Vestal, NY 13901

AFTAC/CA - Phillips Laboratory
(STINFO) ATFN: TSML
Patrick AFB, FL 32925-6001 Hanscom AFB, MA 01731-5000

DARPA/PM Phillips Laboratory
3701 North Fairfax Drive ATTN: SUL
Arlington, VA 22203-1714 Kirtland, NM 87117 (2 copies)

DARPA/RMO/RET"RIEVAL Dr. Michel Bouchon
3701 North Fairfax Drive I.R.I.G.M.-B.P. 68
Arlington, VA 22203-1714 38402 St. Martin D'Heres

Cedex, FRANCE

6



Dr. Michel Caxnpillo Dr. Jorg Schlittenhardt
Observatoire de Grenoble Federal Institute for Geosciences & Nat'l Res.
I.R.I.G.M.-B.P. 53 Postfach 510153
38041 Grenoble, FRANCE D- 3000 Hannover 5 1, GERMANY

Dr. Kin Yip Chun Dr. Johannes Schweitzer
Geophysics Division Institute of Geophysics
Physics Department Ruhr University/Bochum
University of Toronto P.O. Box 1102148
Ontario, CANADA 4360 Bochum 1, GERMANY

Prof. Hans-Peter Harjes Commander and Director
Institute for Geophysic USAE Waterways Experiment Station
Ruhr University/Bochum Attn: CEWES-IM-MI-R
P.O. Box 102148 Aifrieda S. Clark, CD DeptIO597
4630 B~ochum 1, GERMANY 3909 Halls Ferry Road

Prof. Eystein Husebye Vcsug, KS 391PO-6199
NTNF/NORSAR
P.O. Box 51
N-200 7 Kjeller, NORWAY

David Jepsen
Acting Head, Nuclear Monitoring Section
Bureau of Mineral Resources
Geology and Geophysics
G.P.O. Box 378, Canberra, AUSTRALIA

Ms. Eva Johannisson
Senior Research Officer
National Defense Research Inst.
P.O. Box 27322
S-102 54 Stockholm, SWEDEN

Dr. Peter Marshall
Procurement Executive
Ministry of Defense
Blacknest, Brimpton
Reading FG7-FRS, UNITED KINGDOM

Dr. Bernard Massinon, Dr. Pierre Mechier
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

Dr. Svein Mykkeltveit
NTNT/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY (3 Copies)

Prof. Keith Priestley
University of Cambridge
Bullard Labs, Dept. of Earth Sciences
Madingley Rise, Madingley Road
Cambridge CR3 OEZ ENGLAND

7


